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LIST OF SYMBOLS 

matrix [see Eq. (18) part two] 
constant defining shape of 
particle a = 0, 1, 2 for slab, 
cylinder and sphere, 
respectively 
function, see Eq. (26) 
radial mesh size 
reciprocal value of radial mesh 
size 
reaction order 
constants [see Eqs. (19), (20)] 

parameter [defined by Eq. (24) 
resp. (27)] 
function [see Eq. (11) part two] 
parameter [defined by Eq. (22) 
resp. (28)] 
dimensionless concentration, 
mean value 
Biot number 
Lewis number 
Nusselt number 
parameter of heat evolution 
first (nth) root of Eq. (8) 
parameter of activation energy 
Frank-Kamenetskii’s 
parameter 6 = @$3 
function, def. by (16) 
dimensionless temperature, 
mean value 
function defined by Eq. (16) 
characteristic values defined by 
Eq. (21) 
roots of characteristic equation 
(21) 
first (nth) root of Eq. (7) 
dimensionless time 
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SUBSCRIPTS 

bulk of a flowing phase 
initial conditions 
partial derivative with respect 
to Y [see U7), (WI 
partial derivative with respect 
to 0 [see (17), (IS)] 
steady state 
limiting values 
values for approximation (29) 

SUPERSCRIPTS 

critical value 

The question of the possible number of 
solution of steady state mass and enthalpy 
balances for reaction within a porous catalyst 
particle has been a subject of great interest 
in the literature (I-4). Weisz and Hicks (5) 
first pointed to the fact, that three solutions 
are attainable. The authors of this paper 
show (B), that multiple solutions can exist 
only in a definite range of the value of 
reaction parameters. A number of authors 
investigated theoretically the problem of 
stability of individual solutions (4, 7-12); 
some of these verified an asymptotic sta- 
bility of solutions numerically on a digital 
computer (7, 11, 12). 

The three stationary solutions (i.e., cor- 
* This article may be considered to be part XIV responding different concentration and tem- 

of the series: Modelling of Chemical Reactors. perature profiles within a particle) had not 
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constant 
Thiele modulus 
functions defined by Eqs. (12), 
(13) 
vector of variables [see Eq. 
(19) part two] 
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TABLE la 
PARAMETERS OF SOME EXOTHERMIC CATALYTIC REACTIONS 

Reaction Y r13 Lw + 
- 

NH8 synthesis (21) 29.4 0.0018 0.00026 1.2 
Synthesis of higher alcohols from CO and Hz (81) 28.4 0.024 0.00020 - 
Oxidation of C&OH to CHzO (II) 16.0 0.175 0.004.5 1.1 
Synthesis of vinylchloride from acetylene 6.5 1.65 0.1 0.27 

and HCl (21) 
Hydrogenation of ethylene (22) 23-27 2.7-l 0.11 0.2-2.8 
Oxidation of Hz (26) 6.75-7.52 0.21-2.3 0.036 0.8-2.0 
Oxidation of ethylene to ethylenoxide (II) 13.4 1.76 0.065 0.08 
Dissociation of NtO (25) 22.0 1.0-2.0 - 1-5 
Hydrogenation of benzene (27) 14-16 1.7-2.0 0.006 0.05-1.9 
Oxidation of SO2 (21) 14.8 0.175 0.0415 0.9 

been, as far as the authors know, obtained 
experimentally. However, number of authors 
experimentally verified that important tem- 
perature gradients within the particle exist 
in the stationary state. Some of these 
measurements will be mentioned in the next 
chapter. 

In this paper the authors make an attempt 
to work out such numerical procedure, which 
will enable one to forecast temperature 
gradients within the catalyst particle during 
the course of the transient process in such a 
manner, that it will not be necessary to solve 
complicated system of the original partial 
differential balance equations describing the 
process. 

In the earlier work (18) it has been shown, 
that the relatively complicated system of 
partial differential equations describing non- 
stationary process in a porous catalyst 
particle can be in a certain way replaced by 
the system of ordinary differential equations. 
This simplification then enables us to per- 
form a qualitative analysis of the process. 
In this paper we intend to make an analysis 
of a problem of stability of solution of the 
simplified equations by making use of 
methods of nonlinear mechanics. Theoretical 
results will then be verified on calculated 
examples. 

II. DIFFUSION AND REACTION IN THE 
NON-ISOTHERMAL CATALYST PARTICLE 

A. Experimental Results 

Simultaneous heat and mass transfer 
inside a porous catalyst particle was the 

subject of great experimental activity. On 
the basis of the known values of the coefii- 
cients of thermal conductivity and effective 
diffusivity within the particle Damkijhler 
(19) forecasted already in 1943 the existence 
of temperature gradients inside the particle, 
but he estimated them as small (3°C). Later 
on Wheeler (20) determined, that in the case 
of hydrogenation reactions the temperature 
difference as high as 100°C can exist inside 
the particle and Prater (28) estimated for 
the reaction of cyclohexan dehydrogenation 
that the decrease of temperature is about 
50°C. 

The values of parameters which appear in 
equations describing heat and mass transfer 
within a catalyst particle were summarized 
by Weisz and Hicks (5) and by Slinko, 
Malinovskaya and Beskov (21). In the next 
Table la some typical values of important 
parameters of reactions used in practice or 
in research are shown. 

The important temperature differences 
within a particle were measured by the 
number of authors. So Cunningham and 
others (22) obtained temperature differences 
17.5-37.4”C for the reaction of hydrogena- 
tion of ethylene, Hugo and Miller (22) 
measured the maximum temperature gra- 
dient 26°C for the reaction of NzO dis- 
sociation, Wurzbacher (24) measured tem- 
perature differences 40-6O”C, Maymo and 
Smith (25) the differences 8-103’C and 
Miller and Deans (26) the differences 
between 6.3-30°C for the reaction between 
hydrogen and oxygen and Irving and 
Butt (27) the temperature differences in 
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the range 6-27°C for the reaction of benzene 
hydrogenation. 

B. Basic Model 
When deriving mathematical model for 

the description of heat and mass transfer 
inside a porous catalyst particle one usually 
assumes, that heat and mass transfer can be 
formally described by means of Fick and 
Fourier law respectively. We shall moreover 
deal only with the case of the simple power- 
law kinetics and also assume that only two 
components are present in the reaction 
mixture. Further, we shall suppose that the 
reaction proceeds without change in the 
number of moles. For the sake of generality 
we shall consider different component con- 
centrations at the surface of the particle and 
inside the bulk of the flowing medium. 

With the above given assumptions the 
general mass and enthalpy balances de- 
scribing transient heat and mass transfer 
within the catalyst particle can be derived 
and these then can be changed into dimen- 
sionless form (8). Resulting partial differ- 
ential equations are presented in the next 
chapt’er. 

III. TRANSPORT EQUATIONS. 
APPROXIMATE EQUATIONS 

Nonstationary heat and mass transfer 
process inside a porous catalyst particle can 
be described by the following equations (13) 

ae -= !?!!+c!+ ijy” 
aT a22 . 

e 
x exp 1 + e/r ( > ___ (2) 

with initial conditions 

7 = 0: e = e,(x), y = Yi(X) 

and boundary conditions in the form 

(3) 

1 ay T>o;.r=l: y=yB-G& 

*=* -L,ae B Bz ax 

z=o: ?!!=ae 
ax ax = 

0. (4) 

Equations (1) and (2) can be simplified, if 
we substitute for the differential operator on 
the right hand side the algebraic expression 
ua. 

!?l?+f!E& -P12e 

respectively 

where pl is the first root of equation 

p cotg p + Bi = 1 
PJl(P) = BiJO(P) 

$ 1 ;] 
tgp = -p/Bi (a = 0) 

and PI is the first root of equation 

/3 cotg p + Nu = 1 
PJlW = NuJo@) 
tg@ = -/?/Nu 

(5) 

(6) 

(7) 

(8) 
On introducing (5) and (6) into Eqs. (1) 
and (2) we obtain 

(9) 

de -= 
d7 -de + 6~” exp (10) 

with initial conditions 

7 = 0: e = ei, y = yi (11) 

The solution of Eqs. (9)-(11) can be numeri- 
cally obtained relatively more easily than 
that of the original system (l)-(4). 

In the following part of the paper we shall 
consider only the case, where Nusselt and 
Biot numbers are equal, i.e., the case where 
p1 = pl. By making use of the methods of 
Ljapunov’s analysis (14) we shall then 
discuss the questions of asymptotic stability 
of solution of simplified balance equations. 

IV. ASYMPTOTIC STABILITY 

The autonomous system (9)-(11) can be 
rewritten in the form: 
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d74 
-L = dY,N dr 

(12) 

Steady states are then the points yo, 00, that 
fulfill the relat’ion 

~(Yo,~o) = dYo,~o) = 0 (14) 

When the dependence p - y as a function 
of time is under consideration, it is con- 
venient to work with a phase plane 0 - y 
(as has been proved in the similar problem 
for CSTR (15)). In the phase plane 0 - y 
steady states (yo,Oo) correspond to singular 
points of the differential equation 

respectively 

dy he) --- z - 44Y,O) 

(154 

Mb) 

On int’roducing new variables 

rl=y-Yo (1’3) 
d=O-eo 

into Eqs. (12) and (13) we obtain (when 
considering only the first order terms) a 
linearized system 

Here, for instance, I/+, denotes a+/ay at the 
point y = yo and 0 = 00. Equations (17) 
and (18) represent the system of two linear 
differential equations with constant coefi- 
cients. A general solution of the system will 
be in the form 

q = K1 edw) + KZ exp(p27) (19) 

8 = K’I exp(pl7) + Klp exp&) (20) 

where ~1 and ~2 are roots of the characteristic 
equation 

P2 - (cpt/ + #eb + wh - (Pe44/ = 0 (21) 

Linearized Eqs. (17) and (18) correspond to 
the original Eqs. (12) and (13) only in the 

nearest neighborhood of the point (yo,tio). 
On the basis of knowledge of the roots ~1 
and p2 we can follow a character of solution 
of Eqs. (12) and (13) or (15a) and (15b) in 
the neighborhood of the steady state 
(YO,~~). The departures q, cp from the steady 
state can be damped with increasing time 
(both roots pul and ~2 have negative real 
parts) or can increase (when at least one of 
the roots has a positive real part). In the 
first case we shall speak about a stable 
singular point of the Eqs. (15a) resp. (15b) 
or about an asymptotically stable solution 
of Eqs. (12) and (13). In the other case we 
then shall speak about an unstable solution. 

When using Poincare’s classification (16) 
we can divide singular points of Eqs. (15a) 
resp. (15b) in agreement with values of 
pi and ~2 into the points of the type of a 
node, focus, saddle and a centre. Since we 
are concerned with the linear approximation 
of the nonlinear problem, we shall not 
further consider a singular point of the type 
of a centre. 

Let us denote 

s = cPei4l - (P&e (22) 

D = (a, - tie)” + 4(~& (23) 

Q = py + tie (24) 

In Table 1 are then characterized the in- 
dividual types of singular points. 

TABLE 1 
TYPES OF SINGULAR POINTS 

Saddle s>o always unstable 

node S<O;D>O ;;; j 
stable 
unstable 

stable 
unstable 

The values of partial derivatives that 
appear in Eqs. (17) and (18) are in our case 
as follows : 

pu=~(a-l-;) 
P12U - Yo) 

pe = - Lw(1 + eo/yy 
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rC/fJ = P? (I +";o,r)' - 1 
( ) 

(25) 

(Here we have used Eqs. (12) and (13) 
where p1 = &). The signs of expressions D, 
Q and S are determined by the signs of D’, 
Q’ and S’ : 

D’ = n-I-E+L.m)(l++) 

12 

- BOLW - ___ 
1 

4nLw&(l - y/0)(1 + &JY)2 

Yo 

(26) 

n-l 
Qf=Iw-2L 

Lwyo l+&,* 
(27) 

S’ = Oon(yO - 1) - (nyo - y. - n) 
x [oo - (1 + eoly)“] (28) 

As can be seen from (28), the condition of 
existence of a saddle is independent of value 
of Lw. It was shown before (3), when 
analyzing steady state transport equations 
for nonisothermal diffusion within a catalyst 
particle, that a character of solution does 
not change essentially if for the temperature 
dependence of the rate constant the following 
approximation is used : 

6 ____. 
ew 1 + o,y = exp 0. 

For the sake of simplicity we shall first deal 
with results obtained for this approximation. 
Expression (28) can be then rewritten into 
the form. 

S’ = Ooyo + ny0 - y. - n (28a) 

For an existence of a saddle 
obtain 

and 
rP > (1 + 4+ 

where 
E (&,&> 

0, 12=7P+l-n 
2 

(S’ > 0) we 

(30) 

f ; [(TO + 1 - n)2 - 4yPJ”2 (31) 

It means, that’ if a singular point has to be 
that of a saddle type parameter rfl must be 
higher than a certain critical value and 
simultaneously the steady state value of 
temperature 00 must lie within the limits 
given by Eq. (31). The steady state transport 
equations can have three solutions in the 
case where condition (30) is valid (3). It is 
known, that both upper and lower solutions 
are stable with regard to small perturbations 
imposed and that the middle one is always 
unstable. Numerical calculations have shown 
(7, 12), that in the lower case a reactant 
consumption is very small (low values of 0,) 
while in the upper case reactant consumption 
is high and reaction takes place mostly in 
surface parts of a particle (high values of 
00). Dimensionless temperature 19 in a middle 
steady state lies always between the values 
191 and 02 given by Eq. (31). The middle 
state is of a saddle type and is, therefore, 
always unstable (regardless of the value of 
parameter Lw) . 

A stability of a solution that is not of the 
saddle type is determined by the condition 
Q’ < 0. When approximation (29) is used, 
this condition can be written in the form 

n-l __- 
Lw 

& + O. - 1 < 0 (32a) 

The condit’ion will be fulfilled always, when 

00 < 1. (32) 

The stability of solution is then independent 
of the value of parameter Lw. If condition 
(32) is not fulfilled, then it is necessary for 
stability to hold: 

n 

Lw < Lw,* = 
1J,+1-n 

00 - 1 (33) 

i.e., the value of Lewis number has to be 
lower than certain critical value, Lw,*. For 
Lw > Lw,* the steady state is unstable. 

From the condition, which determines an 
existence of focus, we obtain that in this 
case the Lewis number must be in the 
interval 

Lw E (LW,l,LW,Z) (34) 

where Lw,~ and Lw,~ are determined as 
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TABLE 2 
CLASSIFICATION OF REGIONS OF STABILITY. APPROXIMATION (29), 12 = 1 

r8 
- 

-YB I 1 

1 < YS I (ra)* 

r8‘> (“4’ 

Number of 

6 steady states 60 Stability 

- 1 No < 1) stable 

- 1 e. 5 1 stable 

e. > 1 stable for LW < h,,,’ 

9 < $1 1 e. 5 1 stable 
e. > 1 stable for IAU < hi* 

+1 <# <+t 3 lower state 

e. 5 1 stable 
e. > 1 stable for Lw < Lw,’ 

middle state always unstable 
(saddle) 

upper state stable for Lw < Lw,* 

(e. > 1) 

d > $2 1 (00 > 1) stable for Lw < Lw,* 

6 8 

FIG. 1. Dependence of Lw* on yo,y = 20. 
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LW,l,Z = l YOU 0 _ 0 )” 1 41 + 00) 
- yo(n - 1) - yoeob + 1) 

f WdoU - Yo)b - Yob - 1) - Yea > 
(35) 

The expression under root symbol is 
positive for values of 60 $ (&,&); that is in 
agreement with the condition of non- 
existence of a saddle. A stationary point 
that has not a character of a saddle will 
have the character of a focus if condition (34) 
will be fulfilled and of a node if this condition 
will not be fulfilled. The stability of a focus 
or a node is determined by relations (32) 
and (33). A survey of regions of stability for 
a first order reaction is given in Table 2. 

In none of the criteria given above we 
have met with the parameter p1 (which 
characterizes a geometry of a catalyst, 
particle and heat’ and mass transfer at, the 

outer surface of the particle). The value of 
parameter p1 is, however, contained in an 
implicit way in dimensionless values of 
concentration and temperature at the steady 
state -y. and Bo. In the case where approxi- 
mation (29) is not considered the picture 
does not vary qualitatively. For the con- 
dition of stability (Q’ < 0) conditions similar 
to relations (32) and (33) are obtained: 

e,< i+fi 
( > 

2 

Y (327 

Lw < Lw* = 
:+1-a 

(1 +e;o,r)2 - 1 (33’) 

Relation (33’) is for a first order reaction 
shown in Fig. 1 (y = 20) and Fig. 2 (y = 40). 
The critical value of Lewis number Lw* is 
here given as a function of dimensionless 
concentration at the steady state -yo. It 

42 0.4 0.6 08 
70 

1 

FIG. 2. Dependence of Lw* on yo,y = 40. 
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FIG. 3. Trajectories in the phase plane, LW = I. 
Parameters see Table 3. 

follows from the figures, that with increasing 
value of r/3 the value of Lw* decreases. But 
in the wide range of values of y. (and 
therefore also the values of Thiele modulus 
+) the value of Lw’ is approximately the 
same. Lower values of 90 (higher values 
of 4) correspond to a case of high reactant 
consumption, when a reaction takes place 
predominantly in the surface parts of a 
catalyst and concentration very quickly 
decreases to zero value (7) towards the 
center of the particle. In this working 
regime of a catalyst the value of critical 
Lewis number again increases. For high 
values of yo condition (32’) is fulfilled and 
the process is always stable. 

For an existence of a focus conditions 
similar to those given by relations (34) and 
(35) can be derived: 

Lw c (LWI,LW?) (34’) 

where Lwl,z are the roots of the quadratic 
equation 

where 

ALw2 + BLw + C = 0 (35’) 

FIG. 4. Trajectories in the phase plane, Lw = 2.5. 
Parameters see Table 3. 

A= [(1+$)1-oBo] 

B=2(n-l-;)(l+$) 

x[(1++y-eo]-4nBo(1++) 

)(l-Yyo 

Conditions analogous to those of (30)-(31) 
for existence of a solution of the type of a 
saddle are more complicated for the case 
where approximation (29) is not valid and 
analytical criteria in explicit form cannot be 
simply obtained. For given values of 
parameters can be, for example, values of 
01 and 02 evaluated from an algebraic 
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equation of a higher degree (condit’ion 
S’ = 0) numerically. 

V. DESCRIPTION OF NUMERICAL RESULTS 

The above given qualitative analysis is 
valid only in the neighborhood of a steady 
state. When we wish to follow a course of 
solution in time we have to integrate Eqs. 
(9) and (10) numericaily. For a numerical 
integration the method of Runge-Kutta- 
Merson with automatic control of integration 
step size was used. The results obtained for 
different initial conditions 0i, yi are graphi- 
cally shown in the phase plane 8 - y. We 
shall deal with a discussion of results for 
both cases, i.e., those where only a single so- 
lution of steady state transport equations 
exists and also those, where there are three 
such solutions (6). 

For the case, where only single solution 
of Eqs. (9) and (10) exists, the chosen 

IO 

8 

8 

6 

fl 

2 

0 
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Limit cycles for different values of Lewis 

TABLE 3 

y = 20 n=l yo = 0.237 
p = 0.2 a=2 O. = 3.253 
6=9 x11 = Bi * m 

parameters are given in Table 3. For these 
parameters the effect of change of Lewis 
number was followed. 

In Fig. 3 the case where Lw = lt is 
shown. The single steady state &, = 3.253, 
ye = 0.237 is of a node type. The dashed 
line denotes the points of temperature 
maxima on trajectories in the phase plane. 
As can be seen from the figure, temperature 
within a catalyst particle can exceed the 
maximum steady state value given by 
Prater’s relation (here 0 = r/3 = 4). From 
the values of parameters given in Table 3 
we can calculate the values of limits of 
Lewis number: Lwl, Lwz and Lw*. We 
obtain Lwl = 1.056; Lwz = 10.02; Lw* = 
3.25. When the Lewis number increases, 
we obtain successively the following cases 
(Table 4). 

TABLE; 4 

Lw Type of stationary point Stability 

O-l. 056 
1.056-3.25 

3.25-10.02 
10.02-00 

node 
focus 

focus 
node 

stable 

unstable 

The cases given in Table 4 are shown in 
figures. In Fig. 4 (Lw = 2.5) is presented 
the case, where the stationary point is of the 
type of a stable focus. If the value of Lw 
exceeds the critical value Lw*, a limit cycle 
arises. This limit cycle is stable from both 
sides. In Fig. 5 are shown limit cycles for 
various values of Lewis number. With 

t When introducing substitution 7 = A’ and at 
the same: time 4 = ~6, 4’1 = gpr into Eqs. (9) and 
(lo), resultas in a phase plane will not change. 
Figure 3,. therefore, corresponds not only to the 
vahres p, = 3.1416, 6 = 1.5, but also for instance to 
t,he values p’r = 1.5708 (a = 0) and $’ = 0.75. 
Numerical analysis can thus be made only for one 
value of the parameter pr and for a succession of 
valrres of the parameter $J. 
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6 

FIG. 6. Effect of Lewis number on maximum 
attained temperature inside a particle. 

increasing value of Lewis number the limit 
cycles also increase and, in agreement with 
the results of Aris and Amundson for a 
CSTR (15), their asymmetry enlarge. The 
condition for unstability is, therefore, also 
the condition for existence of a limit cycle 
(and also of existence of a stationary periodic 
process). So in the case of a single steady 
state there exist only the following cases of 
stationary states: a stable node or focus and 
a limit cycle. 

The maximum value of temperature 
attainable inside a catalyst particle during a 
transient process is, as has been shown by 
Wei (17) a function of Lewis number and 
depends also on values of 19i and yi. The 

FIG. 7. Trajectories in the phase plane, Lw = 1. 
Parameters see Table 5. 

dependence is illustrated in Fig. 6, where 
integral curves, starting from one initial 
point, are presented for different vaIues of 
Lewis number. 

Now we shall deal with the case where 
three steady states exist. The parameters 
are listed in Table 5. 

As well as in the foregoing example we 
shall follow the effect of variation of Lewis 
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FIG. 8. Trajectories in the phase plane, Lw = 1.5. FIG. 9. Trajectories in t.he phase plane, Lw = 2.5. 
Parameters see Table 5. Paramet#ers see Table 5. 

TABLE 5 

A B C 

y = 20 n=l y, = 0.932; 0.607; 0.108 
‘3 = 0.4 a. = 2 00 = 0.544; 3.144; 7.914 
6 = 3.38 ijy~c = Bi + P 
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FIG. 11. Limit cycles for different values of Lewis 
number. 

Separatrix DBE divides integral curves 
according to appurtenance to the steady 
states A or C. Integral curves BC and BA 
are straight lines. A similar situation is 
shown in Fig. 8, where Lw = 1.5. Separatrix 
DBE is turned with regards to the foregoing 
example and the integral lines BA and BC 
are not straight lines. In Fig. 9 the picture 
for Lw = 2.5 is presented. The upper steady 
state C is of a focus type. The trajectories 
y - 6’ starting in the region EBF make a 
circuit around the integral curve BFGC, 
connecting the steady states B and C, and 
must go between D and G. When Lewis 
number exceeds Lw* the upper steady 
state becomes unstable. The case where 
Lw = 3.3 is shown in Fig. 10. Around the 
upper steady state is formed a limit cycle. 
The branch DB of separatrix does not cease 
yet, but intermingles to the limit cycle. 
All the trajectories starting in the region 
EBF must go through a narrow gap between 
the two lines. The dependence of a shape of 
the limit cycle on Lewis number is shown in 
Fig. 12. When Lewis number further 
increases, the limit cycle around the st’eady 

FIG. 10. Trajectories in the phase plane, Lw = 3.3. 
Parameters see Table 5. 

number. The coordinates of the steady 
states in the phase plane are given in Table 5. 
The lower steady state A is always stable as 
the condition (32’) is fulfilled. For the upper 
steady state C we obtain from (33’) Lw’ = 
3.21. Trajectories y - 8 for Lw = 1 are 
given in Fig. 7. The steady states A and C 
are stable, the state B is unstable (a saddle). 
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state C vanishes. The only steady state A 
then exists and all the trajectories in the 
phase plane go towards it. The trajectories 
starting in the region BDFG of the phase 
plane must go between the points G and C. 
The trajectories starting in the region EBD 
go around the curve BDF from the outer 

FIG. 12. Trajectories in the phase plane, Lw = 5. 
Parameters see Table 5. 

We have discussed above the example 
with three steady states, from which the 
lower one fulfills the condition (32’) and is, 
therefore, always stable. But for t,he prob- 
lems with three solutions there usually 
exists a small range of parameters 4 closely 
below the value &, where the condition (32’) 
is not fulfilled. Then the value of Lw can be 
chosen in such a manner, that also the lower 
steady state becomes unstable. Such a case 
can be realized if the value of 6 in Table 5 is 
changed for 6 = 4.476. The corresponding 
value of 00 is then equal to 1.165 and Lw* 
equals 28.9. A numerical simulation has 
shown, that the limit cycle which arises is 
numerically evaluated with difficulties and 
for higher values of Lw can include all three 
steady states. 

APPENDIX 

[ Stability of Solution of Eqs. (1) and (2) 
for a Zero Order Reactio?, 

For a zero reaction there is no coupling 
between mass and enthalpy balances and the 
equations can be, therefore, solved suc- 
cessively. For qualitative analysis it will 
suffice, when we shall discuss only enthalpy 
balance. It is for a zero order reaction in 
the form 

ae IYe -=- 
ar ax2 +Ks+6exp & 

( > 
(2’) 

On introducing approximation (5) we obtain 

de I9 -= 
dT -de+ 6exp I + e,r 

( > 
~ (10’) 

The linearized equation is in the form 

X exp (n$& - aI2] (18’) 

From the steady state solution (when in 
(10’) is c&3/& = 0) we obtain the expression 
for a?. If this is substituted into (18’) 

we obtain 

cl9 - = &exp(&;) 
dr 

x 0 +lgo!Y12 1 - ; 
I 

(lS#) 
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Solution of Eq. (18”) is in the form 

6 = diexp Kr 

tally solved examples. A possibility of 
existence of limit, cycle is proved and dis- 
cussed for unstable cases. 

where a sign of K is determined by a sign 
of expression [l/(1 + 00,‘~)~ - l/&J. When REFERENCES 
y ---f co the known condition for stability 1. Q)STERGAARD, K., Chem. Eng. &i. lEi, 259 
B0 < 11* is obtained. For bounded values ( 1963). 

of y the solution is unstable in the range of 2. WEEKMAN, V. W., J. Catal. 5, 44 (1966). 
values of 00, given by the expression 3. HL~v~~EK, V., AND MAREK. M.. Coil. Czech. 

(00)1,2 = Y (,n - 1 * d&). (31’) 4. 

As follows from Eq. (31’) the solution is 6. 
always stable for y < 4. 

6. 

Chem. Common. 33, & (i968) ; Chem. 
Eng. Xci. 23, 865 (1968). 

PISMEN, L. M., AND CHARKAC, Ju. I., Dokl. 
AN f%5’R 168, 632 (1966). 

WEI~Z, P. B., AND HICKS, G. S., Chem. Eng. 
xci. 17, 265 (1962). 

Stability of Solution of Eqs. (1) and (2) 
for an Isothermal Reaction 7. 

In an isothermal case we can consider 
only Eq. (1) which is in the form 

8 

9. 

On introducing approximation (6) we obtain Ii. 

Lwd$ = P?(l - y) - $yn (9’) B* 

The linearized Eq. (17) is then in the form Is* 

f&L $-j (Pl” + n42y0*-1)rl 
14. -- 

dr 
16. 

Therefore it holds 
16. 

q = K1 exp - k (01 + W2y0n-‘)]r (19’) 
17. 

From (19’) it follows, that the steady state 
of the isothermal problem (9’) is always 
stable. 

SUMMARY 

An analysis of transient heat and mass 
transfer within a porous catalyst particle 
has been made on the basis of an approximate 
model, that consists of two nonlinear 
ordinary differential equations. Classification 
of solutions of equations in the neighborhood 
of steady states and a discussion of questions 
of stability was performed on the basis of 
the first method of Ljapunov. Conclusions 
on the stability of given steady states are 
expressed in the form of analytic criteria. 
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